At the moment, when we are processing and sending an SMS we open
a DB connection at the start of the celery task and then close it
at the end of the celery task. Nice and simple.
However, during that celery task we make an HTTP call out to our
SMS providers. If our SMS providers have problems or response times
start to slow then it means we have an open DB connection sat waiting
for our SMS providers to respond which could take seconds. If our
SMS providers grind to a halt, this would cause all of the
celery tasks to hold on to their connections and we would run out
of DB connections and Notify would fall over.
We think we can solve this by closing the DB session which releases
the DB connection back to the pool.
Note, we've seen this happen in staging during load testing if our
SMS provider stub has fallen over. We've never seen it in production
and it may be less unlikely to happen as we are balancing traffic
across two providers and they generally have very good uptime.
One downside to be aware of is there could be a slight increase in
time spent to send an SMS as we will now spend a bit of extra time
closing the DB session and then reopening it again after the HTTP
request is done.
Note, there is no reason this approach couldn't be copied for our
email provider too if it appears successful.
If the S3 object is missing [1], then that's what we want, so we
don't need such a severe log for it, but we still want to know as
it's not expected. This is separate to more general "ClientError"
exceptions, which could mean anything.
There weren't any tests to cover missing S3 objects, so I've added
one. I don't think we need a test for ClientErrors:
- If there was no handler, the task would fail and we'd learn about
it that way.
- The scope of the calling task is now much smaller, so it matters
less than it used to [2].
[1]: 81a79e56ce/app/letters/utils.py (L52)
[2]: f965322f25
a bunch of these tests are now covered in the task test, so got rid of
some. Now that the "how long ago to delete" questions is asked in the
task rather than in the dao, and only one service is looked at at a
time, we don't need to worry about data retention, etc. Hopefully made
the tests simpler - there may still be some duplicates or overlaps
between the various cases.
we really don't gain anything by running each service delete in sequence
- we get the services, and then just loop through them deleting per
service. By deleting per service in separate tasks, we can take
advantage of parallelism. the only thing we lose is some log lines but I
don't think we're that interested in them.
only set query limit at the move_notifications dao function - the task
doesn't really care about the technical implementation of how it deletes
the notifications
Previously this was limited to 500K notifications. While we don't
expect to reach this limit, it's not impossible e.g. if we had a
repeat of the incident where one of our providers stopped sending
us status updates. Although that's not great, it's worse if our
code can't cope with the unexpectedly high volume.
This reuses the technique we have elsewhere [1] to keep processing
in batches until there's nothing left. Specifying a cutoff point
means the total amount of work to do can't keep growing.
[1]: 2fb432adaf/app/dao/notifications_dao.py (L441)
Previously we specified the period and calculated the cutoff time
in the function. Passing it in means we can run the method multiple
times and avoid getting "new" notifications to time out in the time
it takes to process each batch.
Previously most of the assertions were being run *before* we had
actually called the function. There was also a redundant block of
assertions that just asserted the initial state of the test data.
We have been running in to the problem in
pallets/flask-sqlalchemy#518 where
our page loads very slow when viewing a single page of notifications
for a service in the admin app. Tracing this back and using SQL
explain analyze I can see that getting the notifications takes about
a second but the second query to count how many notifications there
are (to work out if there is a next page of pagination) can take up
to 100 seconds.
As suggested in that issue, we do the pagination ourselves.
Our pagination doesn't need us to know exactly how many notifications
there are, just whether there are any on the next page and that can
be done without running the slow query to count how many
notifications in total by using `count_pages=False`.
This commit is analagous to
c68d1a2f23
The only difference is that in that case, the pagination links are
used to show prev and/or next links in the admin app. In this case,
the pagination links are only used to see if there is a page 2, and
if there is, say that we are only showing the first 50 results.
The way it was done before, the remainder was incorrect in the
billing report and in the org usage query - it was the sms remainder
left at the start of the report period, not at the end of that period.
This became apparent when we tried to show sms_remainder on the org
usage report, where start date is always the start of the financial year.
We saw that sms sent by services did not reduce their free allowance
remainder according to the report. As a result of this, we had to
temporarily remove of sms_remainder column from the report, until
we fix the bug - it has been fixed now, yay!
I think the bug has snuck in partially because our fixtures for testing
this part of the code are quite complex, so it was
harder to see that numbers don't add up. I have added comments
to the tests to try and make it a bit clearer why the results are
as they are.
I also added comments to the code, and renamed some variables,
to make it easier to understand, as there are quite a few
moving parts in it - subqueries and the like.
I also renamed the fetch_sms_free_allowance_remainder method to
fetch_sms_free_allowance_remainder_until_date so it is clearer
what it does.
In response to [1].
[1]: https://github.com/alphagov/notifications-api/pull/3383#discussion_r759379988
It turns out the code that inspired this new alert - in the old
"timeout-sending-notifications" task - was actually redundant as
we already have a task to "replay" notifications still in "created",
which is much better than just alerting about them.
It's possible the replayed notifications will also fail, but in
both cases we should see some kind of error due to this, so I don't
think we're losing anything by not having an alert.
This removes 3 duplicate instances of the same code, which is still
tested implicitly via test_process_ses_receipt_tasks [1]. In the
next commit we'll make this test more explicit, to reflect that it's
now being reused elsewhere and shouldn't change arbitrarily.
We do lose the "print" statement from the command instance of the
code, but I think that's a very tolerable loss.
[1]: 16ec8ccb8a/tests/app/celery/test_process_ses_receipts_tasks.py (L94)
This now matches the behaviour of the test above it: mocking out
the DAO function in order to focus on the specific behaviour of
the function under test.
These scenarios are already covered by the DAO tests. It's enough
to just check the DAO function is called as expected.
While sometimes it can be better to have more end-to-end tests, the
convention across much of this app is to do unit tests.
I find it really difficult to visually parse test files unless we
have a consistent convention for how we name our test functions.
In most of our tests the name of the test function starts with the
name of the function under test.
This is so we can use it to address issues highlighted by the new
alert, if it's not possible to actually send the notifications e.g.
if they are somehow 'invalid'.
Previously this was added for a one-off use case [1]. This rewrites
the task to operate on arbitrary notification IDs instead of client
refs, which aren't always present for notifications we may want to
send / replay callbacks for. Since the task may now need to work on
notifications more than one service, I had to restructure it to cope
with multiple callback APIs.
Note that, in the test, I've chosen to do a chain of invocations and
assertions, rather than duplicate a load of boilerplate or introduce
funky parametrize flags for a service with/out a callback API. We'll
refactor this in a later commit.
[1]: e95740a6b5
This will log an error when email or SMS notifications have been
stuck in 'created' for too long - normally they should be 'sending'
in seconds, noting that we have a goal of < 10s wait time for most
notifications being processed our platform.
In the next commits we'll decouple similar functionality from the
existing 'timeout-sending-notifications' task.
These don't appear to be used anywhere in the admin app and this
route is only used by the admin app. Therefore it is safe to remove
them.
We remove them because the calculate the total number of notifications
or the final page number of results can be particularly slow for
services with many many notifications, for example 100 seconds
for a service with 500k notifications sent in the past 7 days.
Given neither are being used, this will give us the potential in
the next commit to reduce the number of slow queries and improve
page load times.
Note, I've kept the scope small by only introducing the new
pagination function for this one endpoint but there could be scope
in future to get all pagination using the next function if
appropriate.
This appears to not be thread safe: it started failing when run in
parallel with other tests in this PR [1]. We don't get much out of
using caplog over patching - it just proves our logging config isn't
swallowing the error logs, which we shouldn't need to test here.
[1]: https://github.com/alphagov/notifications-api/pull/3383
We are starting to see lots of 100.0%s in the current table
and we think this looks suspiciously too good so think it is
beneficial to change it to be 2dp such that we get a few more
non 100.0% values.
For the admin app to be able to show things to 2dp, we need to
give at least 2dp of accuracy otherwise we are losing 1dp of
granularity.
The approach is to just give all the granularity available by
returning the exact result from the DB and then the admin can
choose how many dps to use.
TLDR: Don't return as many services, and only return their IDs and not
the whole service objects.
Context:
the delete notifications nightly task has been taking longer and longer,
and to delete all three notification types in sequence it now takes up
to 8 hours.
This is because we were retrieving all services, loading them into
memory on the worker, and then trying to delete notifications for each
service in turn.
While it does use a fair chunk of IOPS/CPU on our postgres db, we're not
anywhere close to capacity on those (20% CPU, 4k IOPS out of 30k max)[1]
The real issue appears to be that the task is CPU bound on the periodic
worker - we see the worker spike up to 100% CPU regularly across the
whole 3am-11am period.
We also noticed that for each notification type the task first processes
services with custom data retention (not many but some of the biggest
users), then deals with all other services. We can see from looking at
kibana that, for example, the task starts at 3am, and the custom data
retention service email deletions are finished by 3:12am. The rest of
the emails don't get deleted until 5am, so we knew that the problem is
with how it handles the other services.
There are currently 17000 services in the database. On a typical day,
~800 services will have notifications that are over 7 days old and need
to be deleted. By only returning these services, we reduce the amount of
data transfer and serialisation that needs to happen. It takes about two
minutes to retrieve the distinct service ids from the notifications
table for sms notifications, but that is only 5% the size of the full
list so cuts down on a lot of processing
Also, by only returning service_ids rather than the whole `Service`
model we avoid sqlalchemy needing to do lots of data serialisation, when
we were only using the `Service.id` field from that result anyway.
[1] https://admin.cloud.service.gov.uk/organisations/55b1eb7d-e4c5-4359-9466-dd3ca5b0e457/spaces/80d769ff-7b01-49a4-9fa4-f87edd5328f9/services/6093d337-6918-4b97-9709-97529114eb90/metrics
[2] https://grafana-paas.cloudapps.digital/d/_GlGBNbmk/notify-apps?orgId=2&refresh=5s&var-space=production&var-app=notify-delivery-worker-periodic&from=now-24h&to=now
[3] https://kibana.logit.io/s/9423a789-282c-4113-908d-0be3b1bc9d1d/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-24h,mode:quick,to:now))&_a=(columns:!(message),index:'logstash-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:'%22Deleting%20email%20notifications%20for%20services%20without%20flexible%20data%20retention%22')),sort:!('@timestamp',desc))
For preview and staging environments, we often send no messages
in a single day. This is currently causing a `DivisionByZero` error
that is rendering the page with no results. This makes it impossible
to look at preview/staging and see if the performance page is
working correctly or not.
(psycopg2.errors.DivisionByZero) division by zero
[SQL: SELECT CAST(ft_processing_time.bst_date AS TEXT) AS date, ft_processing_time.messages_total AS ft_processing_time_messages_total, ft_processing_time.messages_within_10_secs AS ft_processing_time_messages_within_10_secs, (ft_processing_time.messages_within_10_secs / CAST(ft_processing_time.messages_total AS FLOAT)) * %(param_1)s AS percentage
FROM ft_processing_time
WHERE ft_processing_time.bst_date >= %(bst_date_1)s AND ft_processing_time.bst_date <= %(bst_date_2)s ORDER BY ft_processing_time.bst_date]
[parameters: {'param_1': 100, 'bst_date_1': datetime.date(2021, 11, 12), 'bst_date_2': datetime.date(2021, 11, 19)}]
(Background on this error at: http://sqlalche.me/e/14/9h9h)
I've fixed this by falling back to 100.0% for days we send
no messages. Maybe some argument that it should be N/A rather than
100% but I think it doesn't really matter as this is only
going to affect preview and staging as we will never have a day
sending no messages in production.
If a polygon is smaller than the largest polygon in our dataset of
simplified polygons then we’re only throwing away useful detail by
simplifying it.
We should still simplify larger polygons as a fallback, to avoid sending
anything to the CBC that we’re not sure it will like.
The thresholds here are low: we can raise them as we test and experiment
more.
Here’s some data about the Flood Warning Service polygons
Percentile | 80% | 90% | 95% | 98% | 99% | 99.9%
-----------|-----|-------|--------|---------|---------|---------
Point count| 226 | 401.9 | 640.45 | 1015.38 | 1389.07 | 3008.609
Percentile | 80% | 90% | 95% | 98% | 99% | 99.9%
--------------|-----|-------|--------|---------|---------|---------
Polygon count |2----|3------|5-------|8--------|10-------|40.469
This new version of utils implements the transformation of our polygons
to a Cartesian plane. In other words, it converts them from being
defined in spherical degrees to metres.
For the API this means our simplification will be slightly more
accurate.
As stated in the comment, this would have been helpful during an
incident to give further reassurance that a task had at least
started running - at the time the only evidence for this was the
Cronitor dashboard itself, which we don't often look at.
I've removed other, equivalent "starting" logs, but kept those
that provide additional information in the log message.
Note that the new base class doesn't include a bespoke feature we
had here: 'log_on_worker_shutdown'. We've agreed it's reasonable
to remove it for now as it was introduced many years ago and its
use case is unclear - we can always add it back if needed.
We have made it so that gov.uk/alerts shows a ‘1 planned test’ banner
for the whole of the day when there has been an operator test on that
day.
We need to remove the banner when the day is over.
The most straightforward way to do this is to republish the site at the
start of every day. The gov.uk/alerts code[1] will work out if there are
or aren’t any planned tests to show that day.
1. 5a274af6d0/app/models/alerts.py (L38-L44)
Previously we were catching one type of exception if something went
wrong adding a notification to the queue for high volume services.
In reality there are two types of exception so this adds a second
handler to cover both.
For context, this is code we changed experimentally as part of the
upgrade to Celery 5 [1]. At the time we didn't check how the new
exception compared to the old one. It turns out they behaved the
same and we were always vulnerable to the scenario now covered by
the second exception, where the behaviour has changed in Celery 5 -
testing with a large task invocation gives...
Before (Celery 3, large-ish task):
'process_job.apply_async(["a" * 200000])'...
boto.exception.SQSError: SQSError: 400 Bad Request
<?xml version="1.0"?><ErrorResponse xmlns="http://queue.amazonaws.com/doc/2012-11-05/"><Error><Type>Sender</Type><Code>InvalidParameterValue</Code><Message>One or more parameters are invalid. Reason: Message must be shorter than 262144 bytes.</Message><Detail/></Error><RequestId>96162552-cd96-5a14-b3a5-7f503300a662</RequestId></ErrorResponse>
Before (Celery 3, very large task):
<hangs forever>
After (Celery 5, large-ish task):
botocore.exceptions.ClientError: An error occurred (InvalidParameterValue) when calling the SendMessage operation: One or more parameters are invalid. Reason: Message must be shorter than 262144 bytes.
After (Celery 5, very large task):
botocore.parsers.ResponseParserError: Unable to parse response (syntax error: line 1, column 0), invalid XML received. Further retries may succeed:
b'HTTP content length exceeded 1662976 bytes.'
[1]: 29c92a9e54
Previously we passed along this piece of state via the kwargs for
a task, but this runs the risk of the task accidentally receiving
the extra kwarg unless we've covered all the code paths that could
invoke it directly e.g. retries don't invoke __call__.
This switches to using Celery "headers" to pass the extra state. It
turns out that a Celery has two "header" concepts, which leads to
some confusion and even a bug with the framework [1]:
- In older (pre v4.4) versions of Celery, the "headers" specified
by apply_async() would become _the_ headers in the message that
gets passed around workers, etc. These would be available later on
via "self.request.headers".
- Since Celery protocol v2, the meaning of "headers" in the message
changed to become (basically) _all_ metadata about the task [2],
with the "headers" option in apply_async() being merged [3] into
the big dict of metadata.
This makes using headers a bit confusing unfortunately, since the
data structure we put in is subtly different to what comes out in
the request context. Nonetheless, it still works. I've added some
comments to try and clarify it.
Note that one of the original tests is no longer necessary, since we
don't need to worry about argument passing styles with headers.
[1]: https://github.com/celery/celery/issues/4875
[2]: 663e4d3a0b (diff-07a65448b2db3252a9711766beec23372715cd7597c3e309bf53859eabc0107fR343)
[3]: 681a922220/celery/app/amqp.py (L495)
This adds a task which is designed to be used if we want to recreate the
PDF for a precompiled letter (either one that has been created using the
API or one that has been uploaded through the website).
The task takes the `notification_id` of the letter and passes template
preview the details it needs in order to sanitise the original file and
then replace the version in the letters-pdf bucket with the freshly
sanitised version.
Previously we sent them emails about this manually. We also tried
a Zendesk macro/trigger approach, but using a CC means:
- We can control the behaviour ourselves (Zendesk triggers can only
be edited by admins outside our team).
- We keep the DVLA notification approach consistent and in one place,
so notifications always go to the same people.
- Any further (public) updates to the ticket will also trigger a
notification to DVLA (previous trigger only notified on creation).