- sqlalchemy.sql.expression.case must include an else statement.
- clearly define list of columns for inbound_sms_history insert, getting the list from InboundSmsHistory.__table__.c was causing data type errors.
- remove relationships when not needed, the foreign key relationship is established in the creation of the column. This will get rid of the warnings referenced here: http://sqlalche.me/e/14/qzyx.
- update queries now that he user relationship in ServiceUser db model has been removed.
- move the check that a template is archived to the view instead of the dao method. The check was clearing the session before the version history could be done.
Deleting notifications in the night tasks still needs to be
investigated. The raw sql is causing an error.
We want to start using Firetext for sending international SMS. They
require us to use a different API key for international SMS because it
requires a new code path to switch the sender ID to something that the
country will accept.
This PR does not include switching the sender of international SMS to
Firetext but sets us up to do so.
Also update error message for when someone does not have permissions.
The message referenced approving broadcasts specifically, whereas
people would also see it if they try to cancel or reject
broadcast without permission.
Why we allow platform admins to cancel broadcasts:
we do this so they can react quickly if a broadcast was
approved by accident.
`check_if_letters_still_in_created`
The message to Zendesk includes a list of notification ids, this isn't
really necessary and is included in the run book. Creation of the
Zendesk ticket can fail if the message is too long, removing the list of
ids can prevent that from happening.
Celery's apply_async function accepts 'kwargs' as (get ready to be
confused) either a positional argument, or a keyword argument:
Positional: apply_async(['args'], {'kw': 'args'})
Keyword: apply_async(args=['args'], kwargs={'kw': 'args'})
We rely on the positional form in at least one place [1]. This fixes
the overload of apply_async to cope with both forms, and continue to
pass through any other (confusion time again) keyword args to super(),
such as queue="queue".
Note that we've also decided to stop accepting other positional args,
since this is unnecessarily confusing, and we don't currently rely on
it in our code. This stops it creeping in in future.
[1]: fde927e00e/app/job/rest.py (L186)
We only want to send a broadcast if the broadcast message is not stubbed
and the service is live at the point at which the broadcast event should
be created. This is to prevent the situation where a broadcast service is
switched to live / trial mode in between the message being created and
approved (we log an error if this happens).
A stubbed broadcast message with a trial mode service at the point of
approval is not an issue - trial mode services can approve their own
broadcasts. In this situation, we don't create the broadcast event but
also don't need to log an error.
If we're not going to send a broadcast, we don't need to create the
BroadcastEvent in the database. The BroadcastMessage contains all the
data we need - the BroadcastEvent is not used.
Not creating the event when we won't send the broadcast (e.g. when the
broadcast message was created when the service was in trial mode) adds
an extra layer of security.
Introduce a contextmanger function to handle exceptions and nested
transactions. Using the nested_transaction will start a
nested transaction with `db.session.begin_nested`, once the nested
transaction is complete the commit will happen.
`@transactional` has been updated to commit unless in a nested
transaction.
db update/insert.
Using a savepoint for the multiple transactions allows us to rollback if
there is an error when executing the second db transaction.
However, this does add a bit of complexity. Developers need to manage
the db session when calling multiple nested tranactions.
Unit tests have been added to test this functionality and some end to
end tests have been done to make sure all transactions are rollback if
there is an exception while executing the transaction.
the default free allowance for the organisation type.
The update/insert for the default free allowance is done in a separate
transaction. Updates to services need to happen in a transaction to
trigger the insert into the ServicesHistory table. For that reason the
call to set_default_free_allowance_for_service is done after the service
is updated.
I've added a try/except around the set_default_free_allowance_for_service call to ensure we still get the update to the service but get an exception log if the update to annual_billing fails. I believe it's important to preserve the update to the service in the unlikely event that the annual_billing upsert fails.
This change will make our development environments closer to production
even if they aren't hooked up to the CBC proxy lambda functions.
Now in development, we will create the broadcast event and create tasks
for each broadcast provider event. We will still not create actual
broadcast provider message rows in the DB and talk to the CBC proxies.
This should be helpful in development to catch any issues we introduce
to do with sending broadcast messaging. In time we may wish to have some
fake CBC proxies in the AWS tools account that we can interact with to
make it even more realistic.
Tasks will fail if we leave the kwarg in, so I think it's quite
important that we test this works. We don't cover this in any other
test because we call the task functions directly, so the request_id
kwarg doesn't get injected beforehand.
This requires upgrading freezegun, as time.monotonic wasn't frozen
by v1.0. Note that we need to explicitly specify the base class for
the task in the test, the reason for which is quite subtle:
- Normally, by using the 'notify_api' fixture, the base class is set
to NotifyTask automatically by running app.create_app [1].
- However, when run alongside other tests, the imports of files with
other celery tasks cause the base class to be instantiated and cached
as the default Celery one. This means none of our tests actually use
our custom superclass when testing tasks.
Because we can't run 'apply_async' directly (since this would require
an actual Celery broker), we need to manually push/pop the request
Context that's normally done as part of sending a task.
Note also that we use a UUID as the name for a task, since these are
global. We want to avoid the task polluting other tests in future,
as well as make it clear the task is being reused.
[1]: dea5828d0e/app/__init__.py (L113)
config['NOTIFY_ENVIRONMENT'] is hardcoded to `'live'` in the Live config
class. The values as seen on the environment which we send real messages
from:
```
>>> json.loads(os.environ['VCAP_APPLICATION'])['space_name'] # what cloudfoundry sets
'production'
>>> os.environ['NOTIFY_ENVIRONMENT'] # we set this from cloudfoundry
'production'
>>> current_app.config['NOTIFY_ENVIRONMENT'] # hardcoded in the Live config
'live'
>>> current_app.config['NOTIFICATION_QUEUE_PREFIX'] # pulled from env var of same name
'live'
>>> current_app.config['ENV'] # this is an unrelated flask variable
'production'
```
it's important to keep tabs on when these things leave our system.
Sending a zendesk ticket that triggers a P1 is probably our simplest way
of notifying the team when this happens (it's what we do with out of
hours emergencies on the admin app too). We don't have any direct
pagerduty integrations from the api app, but we already have the zendesk
client hooked up.
After broadcasts go live, we may want to change this to a P2 (but even
then, there's arguments for keeping it P1 to start with I think).
Don't cause a P1 if it goes out on staging as that might be MNOs testing.
April 1 2021.
In this PR there is a command to set annual_billing for all active
services with the the new defaults.
The new method `set_default_free_allowance_for_service` will also be
called in a PR to follow that will set a services free allowance to the
default if the organisation for the service is changed.
for the service.
The letters rates for cronw and non crown are the same. It would be nice
to remove the need for crown but for now this is a quick fix.
This is mostly useful for letters.
For templated letters sent via interface, whether one-offs
or CSV uploads, we do not give our users a way to set client reference.
Still, they often have a placeholder with reference that we could use
to set client_reference field.
Why is this helpful?
When letter is returned, or when we experience some printing issues,
often it is difficult to identify letters after the retention period.
This change will make it easier for some users to identify letters.
It will have more impact if we inform our users of this in template
editing guidance.
This adds the `template_id` and `template_version` fields to the data
sent to services from the `send_delivery_status_to_service` task.
We need to account for the task not being passed these fields at first
since there might be tasks retrying which don't have that data. Once all
tasks have been called with the new fields we can then update the code
to assume they are always there.
Since we only send delivery status callbacks for SMS and emails, I've
removed the tests where we call that task with letters.
Names of services and orgs were confusing, and variable setting
was done in a way that made it easy to introduce errors.
Now hopefully it is more readable and more error-proof.
This is not required by DVLA and since [1] we no longer care about
the end of letter filenames when collating them, so removing it is
safe to do. Note that the name of the ZIP files of collated letters
is based on a hash of the filenames, which needed updating in tests.
Before merging this we need to do a test run in Staging, so DVLA can
check that a mixture of the old / new filenames won't cause issues.
[1]: https://github.com/alphagov/notifications-api/pull/3172
We have a scheduled task that was checking for jobs still in progress.
We saw a case where a scheduled job was stuck in a `pending` status as a
result of an app shutting down. This changes the `check_job_status` task
so that it also checks for scheduled jobs which are still pending after
30 minutes.
Previously we did some unnecessary work:
- Collate task. This had one S3 request to get a summary of the object,
which was then used in another request to get the full object. We only
need the size of the object, which is included in the summary [1].
- Archive task. This had one S3 request to get a summary of the object,
which was then used to make another request to delete it. We still need
both requests, but we can remove the S3.Object in the middle.
[1]: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#objectsummary
Previously we made a call to S3 to list objects for a letter, even
though we already had the precise key of the single object to hand.
This removes the one usage of "get_s3_bucket_objects" and uses the
filename directly in the call to remove the object.
Previously, the function would just return a presumed filename. Now that
it actually checks s3, if the file doesn't exist it'll raise an
exception. By default that's a StopIteration at the end of the bucket
iterator, which isn't ideal as this will get supressed if the function
is called within a generator loop further up or anything.
There are a couple of places where we expect the file may not exist, so
we define a custom exception to rescue specifically here. I did consider
subclassing boto's ClientError, but this wasn't straightforward as the
constructor expects to know the operation that failed, which for me is a
signal that it's not an appropriate (re-)use of the class.
Previously we generated the filename we expected a letter PDF to be
stored at in S3, and used that to retrieve it. However, the generated
filename can change over the course of a notification's lifetime e.g.
if the service changes from crown ('.C.') to non-crown ('.N.').
The prefix of the filename is stable: it's based on properties of the
notification - reference and creation - that don't change. This commit
changes the way we interact with letter PDFs in S3:
- Uploading uses the original method to generate the full file name.
The method is renamed to 'generate_' to distinguish it from the new one.
- Downloading uses a new 'find_' method to get the filename using just
its prefix, which makes it agnostic to changes in the filename suffix.
Making this change helps to decouple our code from the requirements DVLA
have on the filenames. While it means more traffic to S3, we rely on S3
in any case to download the files. From experience, we know S3 is highly
reliable and performant, so don't anticipate any issues.
In the tests we favour using moto to mock S3, so that the behaviour is
realistic. There are a couple of places where we just mock the method,
since what it returns isn't important for the test.
Note that, since the new method requires a notification object, we need
to change a query in one place, the columns of which were only selected
to appease the original method to generate a filename.