This test was calling `.load` on model objects, when it should have
been calling `.dump`. This was not working as expected before the
marshmallow upgrade either - the objects returned were errors and not
template versions.
The tests were previously covering a shared function that's now
only used once, so I've inlined it and merged the tests together
with a common naming that's consistent with the code under test.
we add a row in AnnualBilling table whenever a new service is created,
and our billing code assumes this is done. Yet when we were writing
some of the tests, this was not a thing yet, so now we are updating
those tests so they reflect our system well.
Co-authored-by: Pea Tyczynska <pea.tyczynska@digital.cabinet-office.gov.uk>
This is so we have granular data about billable units and costs
so that we can handle multiple sms rates within one financial
year.
We also cast chargeable_units_used_so_far in that subquery
to integer so we don't have type mismatch.
Co-authored-by: Leo Hemsted <leo.hemsted@digital.cabinet-office.gov.uk>
This is functionally very similar to query_service_sms_usage_for_year,
except this query filters by organisation and returns for all live services
within that organisation.
To ensure that the cumulative free allowance counter resets properly for
each service, we use the `partition_by` flag to group up the window
function[^1]. This magically handles all the free allowances
independently for each service.
[^1]: https://www.postgresql.org/docs/current/tutorial-window.html
Co-authored-by: Leo Hemsted <leo.hemsted@digital.cabinet-office.gov.uk>
This can happen in the following scenario (primarily for letters):
1. A service has a mixture of "delivered" and "sending" letters,
which the status task aggregates into two rows:
sending | 123
delivered | 456
2. After the 7 day retention has passed, only the "delivered" letters
will be archived [^1].
3. The status task now looks at the history table [^2], which means
it only sees the "delivered" letters.
4. The "sending" letters are eventually "delivered" and archived (before
the 10 day aggregation cutoff).
5. But the status aggregation task doesn't run.
This commit fixes (5).
[^1]: https://github.com/alphagov/notifications-api/pull/3063
[^2]: f87ebb094d/app/dao/fact_notification_status_dao.py (L51)
* notify_db fixture creates the database connection and ensures the test
db exists and has migrations applied etc. It will run once per session
(test run).
* notify_db_session fixture runs after your test finishes and deletes
all non static (eg type table) data.
In unit tests that hit the database (ie: most of them), 99% of the time
we will need to use notify_db_session to ensure everything is reset. The
only time we don't need to use it is when we're querying things such as
"ensure get X works when database is empty". This is such a low
percentage of tests that it's easier for us to just use
notify_db_session every time, and ensure that all our tests run much
more consistently, at the cost of a small bit of performance when
running tests.
We used to use notify_db to access the session object for manually
adding, committing, etc. To dissuade usage of that fixture I've moved
that to the `notify_db_session`. I've then removed all uses of notify_db
that I could find in the codebase.
As a note, if you're writing a test that uses a `sample_x` fixture, all
of those fixtures rely on notify_db_session so you'll get the teardown
functionality for free. If you're just calling eg `create_x` db.py
functions, then you'll need to make you add notify_db_session fixture to
your test, even if you aren't manually accessing the session.
this was added five years ago but never used. if we want to bring back
variable rates per client we might as well get a fresh start since a lot
has changed since then.
This slowed me down when making changes to the DAO functions. It's
really not necessary to do 3 * 367 DB insertions for both tests.
Before:
time pytest tests/app/dao/test_ft_billing_dao.py -k for_year
...
pytest tests/app/dao/test_ft_billing_dao.py -k for_year 3.95s user 0.40s system 62% cpu 6.971 total
After:
time pytest tests/app/dao/test_ft_billing_dao.py -k for_year
...
pytest tests/app/dao/test_ft_billing_dao.py -k for_year 1.84s user 0.25s system 69% cpu 3.006 total
This is unnecessary since we now have separate "_variable_rates"
tests that check the behaviour for multiple rates explicitly for
the two types of notifications it affects.
This can be calculated from the "free_allowance_used" field and the
"chargeable_units" field, but having it included separately is more
convenient as it can be used directly in Admin [^1].
[^1]: 417e7370bb/app/templates/views/usage.html (L38-L39)
This represents the number of chargeable_units that were actually
free due to the free allowance - they won't be included in "cost".
Although the existing calculations in Admin [^1][^2] will still be
correct with a change in SMS rates - it's cost that's the problem
- it makes sense to have all the knowledge about calculating usage
consistently in these two APIs.
Note that the Integer casting is covered by the API-level tests in
test_rest.
[^1]: 474d7dfda8/app/main/views/dashboard.py (L490)
[^2]: c63660d56d/app/main/views/dashboard.py (L350)
This will replace the manual calculations in Admin [^1][^2] for SMS
and also in API [^3] for annual letter costs.
Doing the calculation here also means we correctly attribute free
allowance to the earliest rows in the billing table - Admin doesn't
know when a given rate was applied so can't do this without making
assumptions about when we change our rates.
Since the calculation now depends on annual billing, we need to
change all the tests to make sure a suitable row exists. I've also
adjusted the test data to match the assumption that there can only
be one SMS rate per bst_date.
Note about "OVER" clause
========================
Using "rows=" ("ROWS BETWEEN") makes more sense than "range=" as
we want the remainder to be incremental within each group in a
"GROUP BY" clause, as well as between groups i.e
# ROWS BETWEEN (arbitrary numbers to illustrate)
date=2021-04-03, units=3, cost=3.29
date=2021-04-03, units=2, cost=4.17
date=2021-04-04, units=2, cost=5.10
vs.
# RANGE BETWEEN
date=2021-04-03, units=3, cost=4.17
date=2021-04-03, units=2, cost=4.17
date=2021-04-04, units=2, cost=5.10
See [^4] for more details and examples.
[^1]: https://github.com/alphagov/notifications-admin/blob/master/app/templates/views/usage.html#L60
[^2]: 072c3b2079/app/billing/billing_schemas.py (L37)
[^3]: 474d7dfda8/app/templates/views/usage.html (L98)
[^4]: https://learnsql.com/blog/difference-between-rows-range-window-functions/
There is no such thing as a "billing unit". The data this field
contained was also a confusing mixture of two types:
- For emails and letters, it was just "notifications_sent".
- For SMS, it was the "chargeable_units" (billable * multiplier).
This replaces the single, ambiguous "billing_units" field with
"chargeable_units" and "notifications_sent" in both usage APIs.
Once Admin is using them we can remove the old field.
We want to query for service usage in the BST financial year:
2022-04-01T00:00:00+01:00 to 2023-03-31T23:59:59+01:00 =>
2022-04-01 to 2023-03-31 # bst_date
Previously we were only doing this explicitly for the monthly API
and it seemed like the yearly usage API was incorrectly querying:
2022-03-31T23:00:00+00:00 to 2023-03-30T23:00:00+00:00 =>
2022-03-31 to 2023-03-30 # "bst_date"
However, it turns out this isn't a problem for two reasons:
1. We've been lucky that none of our rates have changed since 2017,
which is long ago enough that no one would care.
2. There's a quirk somewhere in Sqlalchemy / Postgres that has been
compensating for the lack of explicit BST conversion.
To help ensure we do this consistently in future I've DRYed-up the
BST conversion into a new utility. I could have just hard-coded the
dates but it seemed strange to have the knowledge twice.
I've also adjusted the tests so they detect if we accidentally use
data from a different financial year. (2) is why none of the test
assertions actually need changing and users won't be affected.
Sqlalchemy / Postgres quirk
===========================
The following queries were run on the same data but results differ:
FactBilling.query.filter(FactBilling.bst_date >= datetime(2021,3,31,23,0), FactBilling.bst_date <= '2021-04-05').order_by(FactBilling.bst_date).first().bst_date
datetime.date(2021, 4, 1)
FactBilling.query.filter(FactBilling.bst_date >= '2021-03-31 23:00:00', FactBilling.bst_date <= '2021-04-05').order_by(FactBilling.bst_date).first().bst_date
datetime.date(2021, 3, 31)
Looking at the actual query for the first item above still suggests
the results should be the same, but for the use of "timestamp".
SELECT ...
FROM ft_billing
WHERE ft_billing.service_id = '16b60315-9dab-45d3-a609-e871fbbf5345'::uuid AND ft_billing.bst_date >= '2016-03-31T23:00:00'::timestamp AND ft_billing.bst_date <= '2017-03-31T22:59:59.999999'::timestamp AND ft_billing.notification_type IN ('email', 'letter') GROUP BY ft_billing.rate, ft_billing.notification_type UNION ALL SELECT sum(ft_billing.notifications_sent) AS notifications_sent, sum(ft_billing.billable_units * ft_billing.rate_multiplier) AS billable_units, ft_billing.rate AS ft_billing_rate, ft_billing.notification_type AS ft_billing_notification_type
FROM ft_billing
WHERE ft_billing.service_id = '16b60315-9dab-45d3-a609-e871fbbf5345'::uuid AND ft_billing.bst_date >= '2016-03-31T23:00:00'::timestamp AND ft_billing.bst_date <= '2017-03-31T22:59:59.999999'::timestamp AND ft_billing.notification_type = 'sms' GROUP BY ft_billing.rate, ft_billing.notification_type) AS anon_1 ORDER BY anon_1.notification_type, anon_1.rate
If we try some manual queries with and without '::timestamp' we get:
select distinct(bst_date) from ft_billing where bst_date >= '2022-04-20T23:00:00' order by bst_date desc;
bst_date
------------
2022-04-21
2022-04-20
select distinct(bst_date) from ft_billing where bst_date >= '2022-04-20T23:00:00'::timestamp order by bst_date desc;
bst_date
------------
2022-04-21
2022-04-20
It looks like this is happening because all client connections are
aware of the local timezone, and naive datetimes are interpreted as
being in UTC - not necessarily true, but saves us here!
The monthly API datetimes were pre-converted to dates, so none of
this was relevant for deciding exactly which date to use.
These tests weren't checking anything structural about the APIs
beyond what's covered by the other tests. They represent edge
cases that we can check at a lower level instead.
It was also unclear what these tests were actually testing, as
the term "all cases" is vague. Looking at the test data, there
are variations in rates, multipliers and billable units for SMS
and letters, which I've summarised as "variable rates".
Note: I've removed part of the test data - for the first class
letter rate - as it's not clearly adding anything.
It was unclear why we had both of these tests when the one for
the financial year is more comprehensive - by checking data in
and beyond the specified financial year.
The only thing we lose in this file is checking multiple SMS
rates, which we will fix in the next commit when we import some
tests that are specific to variable rates.
This was creating data in the Notifications table but the funcetion
under test was - now the timestamps are in the past - looking in the
NotificationHistory table. Freezing the time of the test fixes that.
The provider tests are coupled to actual data in the DB, but we
shouldn't have to overhaul the tests when this changes.
Assuming we don't delete old providers, just testing a subset of
the fixture data should give us enough confidence in the code.
Fixes:
> reduced_provider = providers[identifier]
E KeyError: 'firetext'
Note that the mock return value in the other test was wrong [^1].
[^1]: bff97f0bbe/app/dao/provider_details_dao.py (L73)
Daily volumes report: total volumes across the platform aggregated by whole business day (bst_date)
Volumes by service report: total volumes per service aggregated by the date range given.
NB: start and end dates are inclusive
Previously we were looping over data from the Notifications/History
table and then shovelling it into the status table, one row at a time
- plus an extra delete to clean up any existing data.
This replaces that with a batch insertion, similar to how we archive
notifications [1], but using a simple subquery (via "from_select" [2])
instead of a temporary table.
To make the select compatible with the insert, I've used "literal"
to inject the constant pieces of data, so each row has everything it
needs to go into the status table.
[1]: 9ce6d2fe92/app/dao/notifications_dao.py (L295)
[2]: https://docs.sqlalchemy.org/en/14/core/dml.html#sqlalchemy.sql.expression.Insert.from_select
Addresses [1].
Previously the query would always use UTC midnight, even after we
had switched to BST (+1h). We store timestamps as naive UTC in our
DB - without a timezone - but we want the query to work in terms
of GMT / BST so we adjust for that - BST midnight is 11PM in UTC.
[1]: https://github.com/alphagov/notifications-api/pull/3437#discussion_r791998690
1. The number of letters that we send to DVLA will be not be correct (see 20ead82463/app/celery/letters_pdf_tasks.py (L136))
This may raise an alert with DVLA when they find we have sent them fewer letter than we have reported.
2. When we get the PDF from S3 we will get a file not found 20ead82463/app/celery/letters_pdf_tasks.py (L244)
The error will not prevent the collate task from completing but we will see an alert email for the exception and raise questions.
Although this situation is very unlikely because we have a 15 minute window between the last letter deadline date and the time we kick off the collate task we should still mitigate these issues. I updated the queries to only return letters with billable_units > 0, all valid letters should have at least 1 billable unit.
The previous DAO tests were also confusing because they were testing
two functions at the same time, so moving the tests up to the task
level seems very reasonable, and will make it easier to change how
this code works in the next commits.
If a service has not sent any SMS for the financial year the free allowance was showing up as 0 rather than the number in annual billing. The query has been updated to use an outer join so that the free allow will be returned when there is no ft_billing.
There is a potential performance enhancement to only return the data for the services of the organisation in the `fetch_sms_free_allowance_remainder_until_date` subquery. I will investigate in a subsequent PR.
This covers that we only exclude test notifications and the key
type is copied over correctly. In the next commits we're going to
modify this part of the query, so it's important it's covered.
If the S3 object is missing [1], then that's what we want, so we
don't need such a severe log for it, but we still want to know as
it's not expected. This is separate to more general "ClientError"
exceptions, which could mean anything.
There weren't any tests to cover missing S3 objects, so I've added
one. I don't think we need a test for ClientErrors:
- If there was no handler, the task would fail and we'd learn about
it that way.
- The scope of the calling task is now much smaller, so it matters
less than it used to [2].
[1]: 81a79e56ce/app/letters/utils.py (L52)
[2]: f965322f25
a bunch of these tests are now covered in the task test, so got rid of
some. Now that the "how long ago to delete" questions is asked in the
task rather than in the dao, and only one service is looked at at a
time, we don't need to worry about data retention, etc. Hopefully made
the tests simpler - there may still be some duplicates or overlaps
between the various cases.
Previously we specified the period and calculated the cutoff time
in the function. Passing it in means we can run the method multiple
times and avoid getting "new" notifications to time out in the time
it takes to process each batch.
Previously most of the assertions were being run *before* we had
actually called the function. There was also a redundant block of
assertions that just asserted the initial state of the test data.
We have been running in to the problem in
pallets/flask-sqlalchemy#518 where
our page loads very slow when viewing a single page of notifications
for a service in the admin app. Tracing this back and using SQL
explain analyze I can see that getting the notifications takes about
a second but the second query to count how many notifications there
are (to work out if there is a next page of pagination) can take up
to 100 seconds.
As suggested in that issue, we do the pagination ourselves.
Our pagination doesn't need us to know exactly how many notifications
there are, just whether there are any on the next page and that can
be done without running the slow query to count how many
notifications in total by using `count_pages=False`.
This commit is analagous to
c68d1a2f23
The only difference is that in that case, the pagination links are
used to show prev and/or next links in the admin app. In this case,
the pagination links are only used to see if there is a page 2, and
if there is, say that we are only showing the first 50 results.