This deletes a big ol' chunk of code related to letters. It's not everything—there are still a few things that might be tied to sms/email—but it's the the heart of letters function. SMS and email function should be untouched by this.
Areas affected:
- Things obviously about letters
- PDF tasks, used for precompiling letters
- Virus scanning, used for those PDFs
- FTP, used to send letters to the printer
- Postage stuff
This fixes a bug where (letter) notifications left in sending would
temporarily get excluded from billing and status calculations once
the service retention period had elapsed, and then get included once
again when they finally get marked as delivered.*
Status and billing tasks shouldn't need to have knowledge about which
table their data is in and getting this wrong is the fundamental cause
of the bug here. Adding a view across both tables abstracts this away
while keeping the query complexity the same.
Using a view also has the added benefit that we no longer need to care
when the status / billing tasks run in comparison to the deletion task,
since we will retrieve the same data irrespective (see below for a more
detailed discussion on data integrity).
*Such a scenario is rare but has happened.
A New View
==========
I've included all the columns that are shared between the two tables,
even though only a subset are actually needed. Having extra columns
has no impact and may be useful in future.
Although the view isn't actually a table, SQLAlchemy appears to wrap
it without any issues, noting that the package doesn't have any direct
support for "view models". Because we're never inserting data, we don't
need most of the kwargs when defining columns.*
*Note that the "default" kwarg doesn't affect data that's retrieved,
only data that's written (if no value is set).
Data Integrity
==============
The (new) tests cover the main scenarios.
We need to be careful with how the view interacts with the deletion /
archiving task. There are two concerns here:
- Duplicates. The deletion task inserts before it deletes [^1], so we
could end up double counting. It turns out this isn't a problem because
a Postgres UNION is an implicit "DISTINCT" [^2]. I've also verified this
manually, just to be on the safe side.
- No data. It's conceivable that the query will check the history table
just before the insertion, then check the notifications table just after
the deletion. It turns out this isn't a problem either because the whole
query sees the same DB snapshot [^3][^4].*
*I can't think of a way to test this as it's a race condition, but I'm
confident the Postgres docs are accurate.
Performance
===========
I copied the relevant (non-PII) columns from Production for data going
back to 2022-04-01. I then ran several tests.
Queries using the new view still make use of indices on a per-table basis,
as the following query plan illustrates:
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
GroupAggregate (cost=1130820.02..1135353.89 rows=46502 width=97) (actual time=629.863..756.703 rows=72 loops=1)
Group Key: notifications_all_time_view.template_id, notifications_all_time_view.sent_by, notifications_all_time_view.rate_multiplier, notifications_all_time_view.international
-> Sort (cost=1130820.02..1131401.28 rows=232506 width=85) (actual time=629.756..708.914 rows=217563 loops=1)
Sort Key: notifications_all_time_view.template_id, notifications_all_time_view.sent_by, notifications_all_time_view.rate_multiplier, notifications_all_time_view.international
Sort Method: external merge Disk: 9320kB
-> Subquery Scan on notifications_all_time_view (cost=1088506.43..1098969.20 rows=232506 width=85) (actual time=416.118..541.669 rows=217563 loops=1)
-> Unique (cost=1088506.43..1096644.14 rows=232506 width=725) (actual time=416.115..513.065 rows=217563 loops=1)
-> Sort (cost=1088506.43..1089087.70 rows=232506 width=725) (actual time=416.115..451.190 rows=217563 loops=1)
Sort Key: notifications_no_pii.id, notifications_no_pii.job_id, notifications_no_pii.service_id, notifications_no_pii.template_id, notifications_no_pii.key_type, notifications_no_pii.billable_units, notifications_no_pii.notification_type, notifications_no_pii.created_at, notifications_no_pii.sent_by, notifications_no_pii.notification_status, notifications_no_pii.international, notifications_no_pii.rate_multiplier, notifications_no_pii.postage
Sort Method: external merge Disk: 23936kB
-> Append (cost=114.42..918374.12 rows=232506 width=725) (actual time=2.051..298.229 rows=217563 loops=1)
-> Bitmap Heap Scan on notifications_no_pii (cost=114.42..8557.55 rows=2042 width=113) (actual time=1.405..1.442 rows=0 loops=1)
Recheck Cond: ((service_id = 'c5956607-20b1-48b4-8983-85d11404e61f'::uuid) AND (notification_type = 'sms'::notification_type) AND (notification_status = ANY ('{sending,sent,delivered,pending,temporary-failure,permanent-failure}'::text[])) AND (created_at >= '2022-05-01 23:00:00'::timestamp without time zone) AND (created_at < '2022-05-02 23:00:00'::timestamp without time zone))
Filter: ((key_type)::text = ANY ('{normal,team}'::text[]))
-> Bitmap Index Scan on ix_notifications_no_piiservice_id_composite (cost=0.00..113.91 rows=2202 width=0) (actual time=1.402..1.439 rows=0 loops=1)
Index Cond: ((service_id = 'c5956607-20b1-48b4-8983-85d11404e61f'::uuid) AND (notification_type = 'sms'::notification_type) AND (notification_status = ANY ('{sending,sent,delivered,pending,temporary-failure,permanent-failure}'::text[])) AND (created_at >= '2022-05-01 23:00:00'::timestamp without time zone) AND (created_at < '2022-05-02 23:00:00'::timestamp without time zone))
-> Index Scan using ix_notifications_history_no_pii_service_id_composite on notifications_history_no_pii (cost=0.70..906328.97 rows=230464 width=113) (actual time=0.645..281.612 rows=217563 loops=1)
Index Cond: ((service_id = 'c5956607-20b1-48b4-8983-85d11404e61f'::uuid) AND ((key_type)::text = ANY ('{normal,team}'::text[])) AND (notification_type = 'sms'::notification_type) AND (created_at >= '2022-05-01 23:00:00'::timestamp without time zone) AND (created_at < '2022-05-02 23:00:00'::timestamp without time zone))
Filter: (notification_status = ANY ('{sending,sent,delivered,pending,temporary-failure,permanent-failure}'::text[]))
Planning Time: 18.032 ms
Execution Time: 759.001 ms
(21 rows)
Queries using the new view appear to be slower than without, but the
differences I've seen are minimal: the original queries execute in
seconds locally and in Production, so it's not a big issue.
Notes: Performance
==================
I downloaded a minimal set of columns for testing:
\copy (
select
id, notification_type, key_type, created_at, service_id,
template_id, sent_by, rate_multiplier, international,
billable_units, postage, job_id, notification_status
from notifications
) to 'notifications.csv' delimiter ',' csv header;
CREATE TABLE notifications_no_pii (
id uuid NOT NULL,
notification_type public.notification_type NOT NULL,
key_type character varying(255) NOT NULL,
created_at timestamp without time zone NOT NULL,
service_id uuid,
template_id uuid,
sent_by character varying,
rate_multiplier numeric,
international boolean,
billable_units integer NOT NULL,
postage character varying,
job_id uuid,
notification_status text
);
copy notifications_no_pii from '/Users/ben.thorner/Desktop/notifications.csv' delimiter ',' csv header;
CREATE INDEX ix_notifications_no_piicreated_at ON notifications_no_pii USING btree (created_at);
CREATE INDEX ix_notifications_no_piijob_id ON notifications_no_pii USING btree (job_id);
CREATE INDEX ix_notifications_no_piinotification_type_composite ON notifications_no_pii USING btree (notification_type, notification_status, created_at);
CREATE INDEX ix_notifications_no_piiservice_created_at ON notifications_no_pii USING btree (service_id, created_at);
CREATE INDEX ix_notifications_no_piiservice_id_composite ON notifications_no_pii USING btree (service_id, notification_type, notification_status, created_at);
CREATE INDEX ix_notifications_no_piitemplate_id ON notifications_no_pii USING btree (template_id);
And similarly for the history table. I then created a sepatate view
across both of these temporary tables using just these columns.
To test performance I created some queries that reflect what is run
by the billing [^5] and status [^6] tasks e.g.
explain analyze select template_id, sent_by, rate_multiplier, international, sum(billable_units), count(*)
from notifications_all_time_view
where
notification_status in ('sending', 'sent', 'delivered', 'pending', 'temporary-failure', 'permanent-failure')
and key_type in ('normal', 'team')
and created_at >= '2022-05-01 23:00'
and created_at < '2022-05-02 23:00'
and notification_type = 'sms'
and service_id = 'c5956607-20b1-48b4-8983-85d11404e61f'
group by 1,2,3,4;
explain analyze select template_id, job_id, key_type, notification_status, count(*)
from notifications_all_time_view
where created_at >= '2022-05-01 23:00'
and created_at < '2022-05-02 23:00'
and notification_type = 'sms'
and service_id = 'c5956607-20b1-48b4-8983-85d11404e61f'
and key_type in ('normal', 'team')
group by 1,2,3,4;
Between running queries I restarted my local database and also ran
a command to purge disk caches [^7].
I tested on a few services:
- c5956607-20b1-48b4-8983-85d11404e61f on 2022-05-02 (high volume)
- 0cc696c6-b792-409d-99e9-64232f461b0f on 2022-04-06 (highest volume)
- 01135db6-7819-4121-8b97-4aa2d741e372 on 2022-04-14 (very low volume)
All execution results are of the same magnitude using the view compared
to the worst case of either table on its own.
[^1]: 00a04ebf54/app/dao/notifications_dao.py (L389)
[^2]: https://stackoverflow.com/questions/49925/what-is-the-difference-between-union-and-union-all
[^3]: https://www.postgresql.org/docs/current/transaction-iso.html
[^4]: https://dba.stackexchange.com/questions/210485/can-sub-selects-change-in-one-single-query-in-a-read-committed-transaction
[^5]: 00a04ebf54/app/dao/fact_billing_dao.py (L471)
[^6]: 00a04ebf54/app/dao/fact_notification_status_dao.py (L58)
[^7]: https://stackoverflow.com/questions/28845524/echo-3-proc-sys-vm-drop-caches-on-mac-osx
had to go through the code and change a few places where we filter on
template types. i specifically didn't worry about jobs or notifications.
Also, add braodcast_data - a json column that might contain arbitrary
broadcast data that we'll figure out as we go. We don't know what it'll
look like, but it should be returned by the API
We’ve added some new properties to the templates in utils that we can
use instead of doing weird things like
`WithSubjectTemplate.__str__(another_instance)`
previously we checked notifications table, and if the results were
zero, checked the notification history table to see if there's data
in there. When we know that data isn't in notifications, we're still
checking. These queries take half a second per service, and we're
doing at least ten for each of the five thousand services we have in
notify. Most of these services have no data in either table for any
given day, and we can reduce the amount of queries we do by only
checking one table.
Check the data retention for a service, and then if the date is older
than the retention, get from history table.
NOTE: This requires that the delete tasks haven't run yet for the day!
If your retention is three days, this will look in the Notification
table for data from three days ago - expecting that shortly after the
task finishes, we'll delete that data.
The NHS is a special case because it’s not one organisation, but it does
have one consistent brand. So anyone working for an NHS organisation
should have their default branding set when they create a service, even
if we know nothing about their specific organisation.
If you’re trying to show what a Notify email will look like in your
caseworking system all the API gives you at the moment is raw markdown
(with the placeholders replaced).
This isn’t that useful if your caseworkers have no idea what markdown
is. If we also give teams the HTML then they can embed this in their
systems, and the people using those systems will be able to see how
headings, bulleted lists, etc. look.
Bumped notifications-utils to 3.7.0. Version 3.7.0 includes the
`convert_utc_to_bst` and `convert_bst_to_utc` functions and the
`LETTER_PROCESSING_DEADLINE` constant, so these have been removed from
this repo and anywhere using these has now been updated to get these
from `notifications-utils`.
Also bumped pytest by a patch version to bring in a bug fix.
New redis keys are partitioned per service per day. New process is as
follows:
* require a count of days to filter by. Currently admin always gives 7.
* for each day, check and see if there's anything in redis. There won't
be if either a) redis is/was down or b) the service didn't send any
notifications that day
- if there isn't, go to the database and get a count out.
* combine all these stats together
* get the names/template types etc out of the DB at the end.
it's used in a few places - it should definitely know what timezones
are and return datetimes rather than dates, which are hard to work with
in terms of figuring out how tz aware they are.
The command takes a service id and a day, grabs the historical data for
that day (potentially out of notification_history), and pops it in
redis (for eight days, same as if it were written to manually).
also, prefix template usage key with "service" to make clear that it's
a service id, and not an individual template id.
We've run into issues with redis expiring keys while we try and write
to them - short lived redis TTLs aren't really sustainable for keys
where we mutate the state. Template usage is a hash contained in redis
where we increment a count keyed by template_id each time a message is
sent for that template. But if the key expires, hincrby (redis command
for incrementing a value in a hash) will re-create an empty hash.
This is no good, as we need the hash to be populated with the last
seven days worth of data, which we then increment further. We can't
tell whether the hincrby created the key, so a different approach
entirely was needed:
* New redis key: <service_id>-template-usage-<YYYY-MM-DD>. Note: This
YYYY-MM-DD is BTC time so it lines up nicely with ft_billing table
* Incremented to from process_notification - if it doesn't exist yet,
it'll be created then.
* Expiry set to 8 days every time it's incremented to.
Then, at read time, we'll just read the last eight days of keys from
Redis, and sum them up. This works because we're only ever incrementing
from that one place - never setting wholesale, never recreating the
data from scratch. So we know that if the data is in redis, then it is
good and accurate data.
One thing we *don't* know and *cannot* reason about is what no key in
redis means. It could be either of:
* This is the first message that the service has sent today.
* The key was deleted from redis for some reason.
Since we set the TTL to so long, we'll never be writing to a key that
previously expired. But if there is a redis (or operator) error and the
key is deleted, then we'll have bad data - after any data loss we'll
have to rebuild the data.