Files
notifications-admin/app/statistics_utils.py
Chris Hill-Scott 56d9c29e91 Highlight failing jobs on the dashboard
> When we have jobs that have over 3% failure rates we should highlight
> those so that peoples attention is drawn to deal with the failure.
>
> They would then go to the job view to see what the details are where
> they could filter by failure, but that's a different story...
>
> This is just about calculating and highlighting those that need their
> attention.

— https://www.pivotaltracker.com/story/show/121206123

This commit:

- calculates the failure rate for each job
- makes jobs with a failure rate of > 3% go red on the dashboard
2016-06-15 10:25:48 +01:00

90 lines
2.5 KiB
Python

from datetime import datetime
from dateutil import parser
from functools import reduce
def sum_of_statistics(delivery_statistics):
statistics_keys = (
'emails_delivered',
'emails_requested',
'emails_failed',
'sms_requested',
'sms_delivered',
'sms_failed'
)
if not delivery_statistics or not delivery_statistics[0]:
return {
key: 0 for key in statistics_keys
}
return reduce(
lambda x, y: {
key: x.get(key, 0) + y.get(key, 0)
for key in statistics_keys
},
delivery_statistics
)
def add_rates_to(delivery_statistics):
return dict(
emails_failure_rate=(
"{0:.1f}".format(
float(delivery_statistics['emails_failed']) / delivery_statistics['emails_requested'] * 100
)
if delivery_statistics['emails_requested'] else 0
),
sms_failure_rate=(
"{0:.1f}".format(
float(delivery_statistics['sms_failed']) / delivery_statistics['sms_requested'] * 100
)
if delivery_statistics['sms_requested'] else 0
),
week_end_datetime=parser.parse(
delivery_statistics.get('week_end', str(datetime.utcnow()))
),
**delivery_statistics
)
def statistics_by_state(statistics):
return {
'sms': {
'processed': statistics['sms_requested'],
'sending': (
statistics['sms_requested'] - statistics['sms_failed'] - statistics['sms_delivered']
),
'delivered': statistics['sms_delivered'],
'failed': statistics['sms_failed']
},
'email': {
'processed': statistics['emails_requested'],
'sending': (
statistics['emails_requested'] - statistics['emails_failed'] - statistics['emails_delivered']
),
'delivered': statistics['emails_delivered'],
'failed': statistics['emails_failed']
}
}
def get_failure_rate_for_job(job):
if not job.get('notifications_delivered'):
if job.get('notifications_failed'):
return 1
return 0
return (
job.get('notifications_failed', 0) /
(job.get('notifications_failed', 0) + job.get('notifications_delivered', 0))
)
def add_rate_to_jobs(jobs):
return [dict(
**job,
failure_rate=(get_failure_rate_for_job(job)) * 100
) for job in jobs]